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An analysis of the heat and momentum transfer 
during rapid quenching of some 
microcrystalline materials from the melt 
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The process of crystalline ribbon formation by the single roller technique by rapid quenching 
from the melt has been studied with the aid of boundary layer theory. An easy calculation 
method has been proposed for the solution of heat and momentum transfer equations for the 
case in which the melt is rapidly quenched on to a substrate. The proposed method takes 
into account the viscosity change due to the temperature reduction, the heat resistance of 
the puddle-substrate area and the latent heat of fusion separation on the liquid-solid phase 
interface. The thicknesses of the ribbon calculated with the aid of the proposed method show 
good correlation with the experimental results. The quenching rates within the volume of the 
puddle for AI-Cu eutectic alloy are considered. 

1. Introduction 
In the past two decades much attention has been paid 
to materials obtained by rapid quenching from the 
melt, because of the importance of their possible 
application [1-8]. Among the various rapid solidifi- 
cation techniques, the single-roller chill-block casting 
methods of planar flow casting (PFC) and chill block 
melt spinning (CBMS), in which continuously sup- 
plied melt is cooled by a wheel rotating at a high 
revolution rate, are most common at present because 
of their relative simplicity and ability to produce a 
large amount of rapidly solidified material in the form 
of metallic ribbon. The most important application of 
these methods until now has been the production of 
amorphous metallic ribbons. Recently, however, con- 
siderable attention has been paid to rapidly quenched 
crystalline materials, since it has become evident that 
such thermal treatment applied to certain materials 
leads to an improvement of their properties. 

In the case of rapidly solidified crystalline materials 
the melt-spun ribbons exhibit dimensional variations 
which can give the ribbon non-uniform properties. 
The development of mathematical models for descrip- 
tion of the melt-spinning of crystalline materials can 
be very helpful for obtaining quantitative relation- 
ships between the technological parameters and the 
ribbon dimensions, the thickness t and the width w 
[6, 8-10]. 

The aim of this paper is to examine the processes 
which occur in ribbon formation by rapid quenching 
from the melt, and their influence on the geometry of 
the crystalline ribbon obtained. 

2. Description of the process 
In both PFC and CBMS processes, a liquid melt pool 

or puddle (Fig. 1) forms in the region where the liquid 
impinges on the wheel surface. In effect the puddle 
spreads to such a size that the resultant ribbon thick- 
ness and width (CBMS only) satisfy the mass balance 
equation. The main characteristic of this puddle is its 
length, l, and the analysis of the experimental data 
shows that the thickness of the ribbon, t, strongly 
depends on the length of the melt pool. Taking into 
account this circumstance the conclusion can be drawn 
that the puddle length I is one of the main technologi- 
cal characteristics, and that the basic ribbon-forming 
processes take place within the melt puddle volume. 

As the liquid metal is brought into contact with the 
cool surface of the moving substrate, a situation of 
simultaneous heat and momentum transfer arises. 
Due to the adhesion forces, a thin layer of the material 
is dragged out from the puddle volume which conse- 
quently forms the crystalline ribbon. Taking into 
account that the process of rapid quenching from the 
melt is continuous and that part of the melt may 
crystallize inside the volume of the puddle, for the 
ribbon thickness it follows that 

1 &M 
t = VsTT~~ s V~(l,y) dy + 6s(/) (1) 

where Vs is the surface velocity of the substrate, 6s is 
the thickness of the layer crystallized in the puddle 
volume, 6M is the thickness of the boundary layer 
induced from the moving substrate and Vx(x, y) is the 
x-component of the liquid velocity as a function of x 
and y at x = l. Hence in order to obtain the relation- 
ship between the thickness t of the ribbon and the 
key parameters of the process it is necessary to know 
Vx(x, y) and &s(X). 
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Figure 1 Schematic diagram of the molten alloy jet and 
puddle formed on the cold substrate. The thickness of the 
material crystallized in the puddle volume, 6 s, the thick- 
ness of the flow boundary layer, 6M, the heat flows/in, Iota 
and/'re ~ and their directions are shown. 

3. Equations, boundary conditions and 
assumptions 

Mathematically the interaction of the heat and 
momentum transfer processes by rapid quenching 
from the melt, when a steady-state process is con- 
sidered, is described from the Navier-Stokes and 
Fourier equations for a viscous incompressible liquid 
and the Fourier equation for heat transfer in the solid 
phase (the crystallized material) [11]: 

1 
( V - V ) V  - • V p  + [V-(vV)]V V.  V =  0 

V" V T  = DLV2T (2) 

~T 
Vs 0x - DsV 2 T 

wherep is the pressure, 0 L and v are the density and the 
kinematic viscosity of the melt, D s and D L are heat 
diffusion coefficients of  the solid and liquid phases, V 
is the vector of the velocity, T is the temperature 
and V and V 2 are Hamilton and Laplace operators, 
respectively. 

This system of partial differential equations could 
be solved in explicit form only in some particular cases 
[11]. As the case discussed here cannot be reduced 
to one of  them it is necessary to make some simplifi- 
cations in order to obtain a solution of  Equations 2. 

In the present work the following assumptions are 
made, which are believed to be in agreement with 
experiment: 

(a) The process is time-independent. 
(b) Puddle width is constant, hence the flow can be 

treated as two-dimensional. 
(c) The heat diffusion coefficients D s and DT L are 

temperature-independent. 
(d) The heat loss due to the radiation from the free 

surfaces of the puddle is negligible. 
(e) The temperature of the puddle substrate contact 

area is a constant and equal to Tsu [6, 12]. 
(f) The process of momentum transfer is a laminar 

one. 
(g) In the volume of the melt pool, due to the high 

velocity of the substrate surface (>~ 10msec ~) and 
the big difference between the melt and the substrate 
temperatures, V and T gradients obey the relation- 
ships (~V/Ox) ~ (~V/~y)and (OT/~x) ~ (OT/@). 

234 

The last assumption is the necessary condition for 
the application of boundary layer theory [13], which 
applied to Equations 2 and taking into account the 
above-listed conditions (a) to (f) is reduced to the 
following set of equations: 

(a) For the liquid metal 

avx av~ 
vx &-x + ~ a y  

~Vx av~ 
- - +  - 0  
ax ay 

OT 3T _ 
V~ Tx + V~ oy 

(b) For the solid metal 

0T 
Vs & - D s -  

with boundary conditions 

y --+ 

y = 

_ a {v vx) 
(3a) 

@ \ @ ) 

(3b) 

y = 

0 2 T 
Dr L @z (3c) 

02T 
@2 (3d) 

~:Vx  = 0, T = TB 

6s: Vx = Vs, Vy = 0, T = 

•T 0T d6s 
& 7 y  - ;~s 7y  = ~~ RLm dx 

3T 
0 :2  s @ - ~(Tsu - TSD) 

Ts, 

where TB is the temperature of the supplied melt, Ts is 
the temperature of crystallization of the material, TsD 
is the temperature of the substrate surface, e is the 
heat transfer coefficient at the substrate surface, 2L 
and 2s are the thermal conductivities of the liquid and 
solid phases, respectively, L m is the latent heat of 
fusion and d6s/dx is the growth of the solid layer per 
unit length of the puddle [14]. 

At the present time there are two methods for inte- 
gration of Equations 3. The first is the numerical 
explicit difference method [4, 5, 9, 10], and the second 
is through additional transformations to reduce the 
partial differential Equations 3 to an equation or a 
system of ordinary differential equations - the method 
of Blasius [13, 15]. 

Although it is very tempting to use the Blasius 
method for the solution of Equations 3, because of its 
mathematical simplicity and high accuracy, its 



application to the problem discussed gives rise to some 
difficulties, as the boundary conditions 

and 
y = 0 

8T y=as 8_yT y=~s dfs J~L~ -- Xs = eLVsLm ~X 

have to be transformed to ordinary differential 
equations too. If the boundary condition at the melt 
crystalline interface 

aT 
y=as ~rS~y ~=as 

dSs 
dx 

can still be transformed from a partial to an ordinary 
differential equation (see Appendix A), for the bound- 
ary condition on the puddle-substrate contact area 
this is impossible. In order to avoid this difficulty in 
the present paper, a method is proposed based on the 
Blasius "similarity transformations" [15]: 

O = (xVsD~)'/2f(r (4) 

where ~ is the stream function, ~ is a new independent 
variable and f(~) is a function of it. This approach 
allows one to overcome the difficulties pointed out 
above. Application of the above transformations to 
Equations 3 reduces them to the following set of 
ordinary differential equations [7]: 

D L 
(vf")" + ~ f f "  = 0 (5a) 

1 , 
h" + ~fh = 0 (5b) 

1 Dr L~h, = 0 (5c) h" + 

with boundary conditions 

= 0: h = hsu 

r = ~ s : f  = ~s, f '  = 1, h = 1, 

2S Lm ~S 
h~ = -~L h's + 2C~(T.  - Ts) 

~-*  oo: f ' - ~ 0 ,  h ~ 0 ,  h ' - ~ 0  

where h denotes the normalized temperature h = 
(TB - -  T)/(TB - Ts), cs is the profile of the crystal- 
lized material as a ~ variable and hsu = (TB -- Tsu)/ 
(TB -- Ts). The transformation of the melt-crystal 
interface boundary  condit ion  from x, y to r variables 
is given in detail in Appendix  A. The mass  balance 
Equation 1 is transformed into the expression 

t = L J~s[-~'~f'(~) d~ + ~s](IDL~ l12k Vs ] (6) 

In this process the relationships 

~ = y (  V--~s~r ~, V~(x,y) = Vsf'(~) 
2 x12~? / 

obtained from Equation 4 have been used. Bearing in 
mind that 

f ~ f ' ( ~ )  d~ = f ( ~ M ) - - f ( ~ s )  = f ( o o ) -  ~S 

where f({M) and f({s)  are substituted by their equiv- 
alents [13], the ribbon thickness t is given by 

(lDLX~ 1/2 
t = f(oo) k Vs J (7) 

Hence only the value o f f ( l )  at ~ ~ oo is necessary in 
order to determine the thickness of the crystalline 
ribbon. 

In our case Equations 5 are undetermined because 
of the required seven boundary conditions; there are 
only six available, as hsu and is are unknown quan- 
tities. The only way to solve them in their present form 
is to assume that the value of hsu is equal to hsD 
(normalized temperature of the substrate). Unfor- 
tunately this case could not be realized by rapid 
quenching from the melt and it is interesting from the 
methodological point of view only [7]. To define the 
heat transfer resistance at the puddle-substrate con- 
tact area, an additional equation to Equations 5 is 
necessary which must be physically equivalent to the 
boundary condition 

0T = ~ (Tsu_  TSD) 
"~S ~y  _V=~s 

Bearing in mind that this condition has the dimension 
[Wm 2] (the heat flow through unit area) the balance 
of heat flow entering and leaving the volume of the 
puddle may be used in order to obtain the needed 
fourth equation. For convenience in the present work, 
instead of heat flow balance we use the power balance 
equation, as both of them are based on the energy 
conservation law. The heat flow entering the substrate 
Ires = ~(Tsu - -  T S D ) ,  for example, is related to the 
power transmitted from the puddle to the substrate 
Pres by the equation 

Pros 
Ires - ls - c~(Tsu -- TSD) (8) 

i.e. Ires and Pies are linearly dependent on each other 
because l and s in the case discussed are kept constant. 
Here,s denotes the puddle width. According to the 
energy conservation law the power balance equation 
obeys the expression 

ares = Pin -- Pout (9) 

where Pin is the power transmitted to the system by 
means of the molten material entering the puddle 
volume and Pout is the power transmitted out from the 
puddle by means of the material, both liquid and 
solid, dragged out from the moving substrate. 

The power transmitted to the puddle volume is 
expressed by the relationship 

Pin = e L Q  VisTBd (10) 

where C~ is the specific heat capacity of the melt, d is 
the width of the melt flow entering the puddle and V i 
is the velocity of this flow. According to the mass 
balance equation the following chain of equations is 
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fulfilled: 
(IDL~ t12 (11) 

via = tVs = V s f ( o e ) \  Vs,] 

where t is substituted by its equal from Equation 8. 
Substituting Equation 11 into Equation 10, for P~u one 
finally obtains 

(IDL~ 1/2 (12)  
Pin = oLcLTB s Vsf(m) \ Vs J 

The power Pout consists of two components: the power 
poSut transmitted out from the puddle with the solidified 
material, and poLut with the liquid layer: 

Pout ~--- poLut -[- poSut (13) 

Taking into account that 

poSu t 

and that 

soS V s f2s cS r(l, y) dy 

so s Vs CSp f2s T(l, y) dy (14) 

(6McL Vx(l , y) r(l, y) dy poet  = SO L ja s P 

= soLc~ rim s V~(I, y) T(I, y) dy (15) 

thus the full power transmitted out from the puddle is 
given by 

Pout = s iVsCSpOS f~ s T(l, y) dy 

+ C LO L f~6~ V~ (l, y)T(l, y)dy] (16) 

where in Equations 14 to 16 it is assumed that Cp s and 
C L are temperature-independent. As is seen, the value 
of Pout depends on the functions Vx(l, y) and T(l, y) 
(x = l). It can be shown that the change of the 
boundary condition on the liquid-solid interface 
changes the mode of  Vx(l, y) and T(l, y), i.e. the values 
of these functions are strongly influenced by the pro- 
cesses within the puddle volume. Thus the heat separa- 
tion on the liquid-solid interface in Equation 16 is 
accounted for by the mode of the functions V~ (x, y) 
and T(x, y) at x = l. 

The transformation of the last equation from x, y to 
variables yields the expression 

 ou= 

Jf-oLcL p ;;r h(~)fi(~ ) d~) 

+ T B ~ s ( 0 S c  S - -  o L c  L )  -~- oLcLTsf(oo)l 
X (lDLT~ 1/2 (17)  

\ V s j  
where the equations 

'r sd~ = {s, '~js = f (oe )  -- ~s, 

= T s  - -  ( T .  - T s ) h ( g )  T 

have been used in the process. Substituting Equations 
12 and 17 into Equation 9 yields the expression 

Pres  = sVs[(TB 'Ts)@Scs f:s h(~)d~ 

+ oLCLp ;i ~M h(r162 

- -  TB~s (0Scp  S - -  oLcL)](1DL'II/2 (18) 
\ Vs) 

which when substituted into Equation 8 leads us to the 
fourth equation we were looking for: 

~ ( h s  D _ hsu) = [0Sc  s f2s h(~) d~ 

Jr- ~LcL I~M f'(~)h(~) d~ 

TB ~s @c~ - o~c~)] 
T . -  Ts 

This equation together with Equations 5 forms a 
system of integral-differential equations: 

L 
(vf')' + D ~ f f .  = 0 (20a) 

2 J" 

h" + ~fh' = 0 (20b) 

D~ 
h" + � 8 9  r~h '  = 0 (20c) 

~(hsD-  h~u) = [osc s ;~s h(~) d~ 

~- oL cL f~M f'(~)h(~) d~ 

TB ~S (• SCS -- oLcL) ]  
T ~ - r ~  

x 

with boundary conditions 

= O: h = hsu 

= { s : f =  {s, f ' =  1, h = 1, 

"~S , Lm~s 
h~ = TEL hS + 2 G ( T  " _ Vs) 

~ o o : f ' ~ 0 ,  h ~ 0 ,  h ' ~ 0  

which solves the problem formulated in the present 
paper. The integration of Equations 20 yields the 
values o f f ' (~ )  and h(~), together with the velocity and 
the temperatures of the liquid and solid phases: 

x ( r  - f(~)) 

T = T .  - (TB - -  T ~ ) h ( d )  

The integration of Equations 20 gives also the value of 
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T A B  L E I Nomenclature  and selected materials properties 

Nomenclature  Material 

A1 Cu Fe AI-Cu  eutectic 

Heat capacity (kJ kg -  ~ K -  ), 

Densi ty(10 3kgm 3), 

Thermal  diffusion coefficient (10 5 m 2 sec-1 ), 

Latent heat of  fusion (10-sJ  kg- l ) ,  
Viscosity (107m 2 sec-I) ,  
Temperature of  crystallization (K), 
Temperature of  the melt (K), 
Activation energy (kJ mo l -  1 ), 
Thermal conductivity ( W m  l K t), 

Heat transfer coefficient (10 5 W m - ~ K - L )  
Temperature of  the substrate (K), 

Cp L 1.08 0.495 0.456 0.779 
Cp s 1.04 0.384 0.456 0.779 
~o L 2.36 8.03 7.40 3.3 
0 s 2.70 8.93 7.86 3.3 
Dr L 3.61 4.17 0.966 3.45 
D s 7.44 11.6 1.02 3.45 
L m 3.90 2.39 2.72 3.42 
v 0 1.52 0.881 0.367 See Equation 28 
T s 933 1356 1811 821 
T B 1053 1476 19ll 941 
E 9.34 17.0 46 See Equation 28 
2 L 92 165.6 32.6 88.8 
2 s 209 397 36.7 88.8 
c~ 6 6 3 6 
Tso 298 298 298 298 

f(~) at infinity, f (oe) ,  which according to Equation 7 
defines the thickness of the crystalline ribbons. 

One of the most important characteristics of the 
process of  rapid quenching from the melt is the value 
of the cooling rate during the process of ribbon forma- 
tion. Mathematically, this characteristic is given by 
the expression i/" = dT/d'r,  which takes the form 

i / " -  dT  0T 0T 0T _ QT 

aT  
+ Fy ~37 (21) 

since the temperature is a function of x and y. 
The Blasius transformations (Equations 4) lead to 

the following expressions for the cooling rate in the 
puddle volume: for the liquid 

1 
I~IL - 2 x  V s ( r ,  - T s ) h ' ( ~ ) f ( ~ )  (22) 

and for the solid phase 

1 
I TIS - 2x Vs(TB -- Ts)~h'(~) (23) 

With the aid of Equations 22 and 23 the values of  the 
quenching rate in every point of  the puddle volume 
can be calculated, if the values o f f ( ~ )  and h(~) are 
known. 

Except for Equation 20c, the system of  equations so 
obtained cannot be solved analytically (see Appendix 
B), and for this purpose an algorithm has been created 
[12] which allows the Equations 20 to be solved 
numerically. 

4. Testing of the method 
4.1. On the dependences t = t (z l  ) for 

aluminium, copper and AI2Cu-AI No. 
eutectic alloy 

To test the method described in the present work three 
1 

materials have been used, namely pure aluminium and 2 
copper and the eutectic alloy A12Cu-A1, all of  them 3 
subjects of both theoretical and experimental interest 4 

[6, 8, 16-18]. 5 
All constants used in the computational process are 

listed in Table I. It is assumed that all the constants 

are temperature-independent, except for the kinematic 
viscosity of the melt, which obeys the following tem- 
perature dependence [19]: 

v = v0 exp ( E / R T )  (24) 

To calculate the thickness of  crystalline ribbon for 
the case of  pure aluminium, the empirical relationship 
for the dwell time ~1 (q = l /Vs) ,  obtained from 
Katgerman and Van den Brink [8], has been used: 

'171 = 8.61 x 10 -3 gs-l42sec (25) 

The values for the crystalline ribbon thickness, cal- 
culated by the method presented here, are compared 
in Table II with the experimentally obtained data 
from the same authors. As we can see, all calculated 
values are within the error limits of  the experimental 
data. The only exception is for Vs = 19.1msec -~, 
which is approximately 10% bigger than the experi- 
mentally obtained thickness for this velocity. 

The results calculated for the case of pure copper 
and aluminium are plotted in log t-log ~1 coordinates 

in Fig. 2, from which technologically important 
dependences t = t (~)  are derived: 

tc. = 1.86 x 10-1z~ #m (26) 

and 

tAl = 2.88 X 10 2r~ (27) 

Since, in both cases, in the process of calculation all 
technological parameters (~, TsD, TB -- Ts etc.) have 
been taken equal, the observed difference between the 

T A B L E  II Values of  the calculated and experimentally 
obtained thicknesses, as a function of  Vs, for the case of  pure 
a luminium [8] 

Vs texp • 106 (m)* /calc•  106 
(m sec i) (m) 

/rain /max 

47.7 33 54 37.1 
31.8 42 58 54.7 
19. l 56 79 88.2 
12.7 112.5 133 127.3 
8.2 179 229 186.8 

*/min and tma x denote the limits of  the experimental data dispersion 
[81. 
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Figure 2 logt  against l o g ~  plot for four different materials: (1:3) 
pure aluminium, (ix) pure copper, (~) pure iron and (O) A1-Cu 
eutectic alloy. 

relationships t = t(~,) for pure aluminium and copper 
are obviously a consequence of the physical properties 
of  the quenched materials. Hence the differences in the 
relationships t = t(rl) observed experimentally, for 
the different materials, are due to the significant role 
of the physical properties of  the materials and also 
(and not only, as commonly believed) to the melt- 
substrate contact characteristics. 

The kinematic viscosity for the eutectic alloy 
A12Cu-A1 used in the computational process has been 
computed using the following equation [19]: 

In VAI-Cu = NA1 In VA1 + Ncu in Vcu (28) 

where NAI = 0.827 and Ncu = 0.173 are the atomic 
proportions of aluminium and copper in the eutectic. 
It is assumed, by the application of  Equation 28, that 
the viscosity of the eutectic components in the melt 
have the same functional dependence as the melts of  
the pure components. The calculated thicknesses of  
the ribbon for different dwell times are plotted in 
log t-log$x coordinates on Fig. 2, from which the 
following theoretical dependence is derived: 

t = 1.96 x 10-2~ ~ (29) 

Figure 3 shows a cut along the x axis of  the puddle 
for rapid quenching of  A1-Cu eutectic alloy, for two 
different dwell times, vl = 2.25 • 10 4sec (Fig. 3a) 
and 10 4sec (Fig. 3b). As can be seen, a decrease of 
the dwell time, the respective decrease of  the puddle 
length at constant velocity (~ = l/l/s), or an increase 
of  the velocity for constant puddle length leads to an 
increase of the quenching rate within the puddle 
volume. The noticeable diminishment of the cooling 
rate near the bottom of the puddle is due to the latent 
heat of fusion release at the solid-liquid interface. 
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Figure 3 A cut along the x axis of  the puddle, by rapid 
quenching of  A1-Cu eutectic alloy, for two different dwell 
t imes: (a)z  I = 2.25 x 10 4secand(b)v l  = 10-4sec. The 
distribution of the quenching rates in the puddle volume is 
shown. 



4.2. On the dependences t = t ( r l )  and 
t = t(Vs) for pure iron 

To test additionally the method described above, the 
dependences t = t(rl) and t = t(Vs) for pure iron 
have been studied. A similar investigation of the 
dependence t = t(Vs) has been carried out by Sun and 
Davies [9], who used for the integration of the heat 
and momentum transfer equations the finite difference 
method. This offers a good opportunity to compare 
the results obtained with the aid of the method dis- 
cussed here with those obtained with the finite differ- 
ence method. 

Applying the equations from Section 3, and using 
the procedure described in Section 4.1, for the depen- 
dence t = t (q)  (see Fig. 2) one obtains 

('T t = 10 2 , [ .? .6= 10-2  ~SS) (30)  

where the data used for the computational process are 
listed in Table I. According to Davies and co-workers 
[9, 20], the dependence l = l(Vs) is described by the 
empirical equation 

22.4 
l = 2.04 + ~ mm (31) 

The logarithm of the predicted values of t, obtained 
after substitution of Equation 31 into Equation 30, is 
plotted in Fig, 4 against the logarithm of the substrate 
velocity. Thus for the required relationship t = t(Vs) 
one obtains 

524.8 
tpred - -  vO.7 7 #m (32) 

where Vs is in m sec-i. 
For the same dependence the finite difference 

method gives the following equation [9]: 

/pred OC V S A = Vs 0.61 (33) 

As is pointed out by the authors cited above, the value 
for A in this dependence differs from the experimen- 
tally obtained data, as for microcrystalline alloys A 
measures 0.67 to 0.83 [9]. The method discussed here 
gives for A the value of 0.77, which taking into 
account the above comments is in good agreement 
with experiment. 

5. Conclusion 
In the present paper the ribbon formation processes 
for microcrystalline materials by rapid quenching 
from the melt are studied. A method for solution of 
the heat and momentum transfer equations has been 
proposed, taking into account the existence of heat 
transfer resistance on the puddle-substrate contact 
area and the latent heat of fusion separation on the 
liquid-solid interface. 

A comparison of the microcrystalline ribbon thick- 
nesses for the case of pure aluminium, calculated with 
the aid of the Equations 20, shows a satisfactory 
agreement with the experimentally measured values. 
Taking this into account, a general conclusion can 
be drawn that the method presented here correctly 
describes the processes of ribbon formation by rapid 
quenching from the melt; it may be used for deter- 

1.7 

1.6 

i i i 
1.51.3 t ~ 1.5 1.6 

tog v~ 

Figure 4 Predicted re la t ionship  of  log/pred aga ins t  log Vs, indicat ing 
a power- law relat ion tpred oc Vs A with A = 0.77. 

mination of the dependences t = t (q)  in the case of 
crystalline materials which are practical interest. 

This method can be used successfully for investiga- 
tion of the casting parameters as well, which cannot be 
measured by the standard methods, for example the 
heat transfer coefficient c~. 

In the paper some fields are given for the appli- 
cation of the method discussed, to the materials 
aluminium, copper, iron and A1-Cu eutectic alloy (see 
Figs 2; 3a, b; 4). A more detailed investigation of some 
alloys of practical interest, with the aid of the method 
proposed here, will be the subject of another paper. 

A p p e n d i x  A 
When rapid quenching from the melt is applied to 
materials which undergo a liquid-solid phase tran- 
sition, latent heat of freezing is generated at the 
liquid-solid interface. Mathematically, this circum- 
stance is described [14] by the equation 

& 0 T  - ,ZL 0T = ~L V~Lm ~ (A1) 

The possible application of the Blasius method to the 
heat and momentum transfer equations for the case 
discussed depends on whether the boundary condition 
(Equation A1) may be transformed to an ordinary 
differential equation with argument 4, or not. Here, a 
detailed description of the process of the transforma- 
tion of Equation A 1 from (x, y) to ~ variables is given. 

The substitution of x and y with ~ in OT/Oy yields 
the expression 

0T Oh dh 04 
0y - ( G  - r s )  0y - ( T .  - Ts)  d~ 0y 

d h (  VS ~ I/2 
- (TB --  Ts) ~-~ \~-D-~TLj (A2)  

On the other hand, since is = 6s(Vs/xDC) I/2, the 
derivative d6s/dx yields 

d 6 s  _ : s (DL~ 1/2 
dx 2 xVs ) (A3) 

as ~-s is a constant. Substituting the last two 

239 



expressions into Equation A1, the following relation- 
ship is obtained: 

dh L 2 s dh r s=e s 
d~ ~=~s 2 L d~ 

~ C Lra D~ 
= is 2(TB- rs)& 

Lm 
2(TB -- Ts)C L is (A4) 

which is the boundary condition (of Equation A1) 
transformed from (x, y) to ~ variables. 

Appendix B 
Analytically, Equation 20c is solved by separation of 
the variables, which yields for h(i) and h'(i) the 
expressions 

(1o ) 
h'({) = h'(0) exp 4 D s {2 (B1) 

( 41D}D s q2)dr/ h({) - h(0) = h'(0) I!.jo exp 

= ht(O)(i~OST~ (DL~I/2~ O},lerf[~\DSJ J 
(B2) 

where erf denotes the error function. 
The boundary condition on the liquid-solid inter- 

face (Equation A1) with the aid of Equations B1, B2 
and A4, after uncomplicated transformations 
becomes 

h[l~=~s = { 2 s ( l - - h s u ) / 2 L e r f [ ~  {DL 

( DT L ~1/2 Zm~s (B3) 
x \=DS j + 2C~(T.- Ts) 

Here h(~s) and h(0) are substituted with their equiv- 
alents. The substitution of Equation B2 into Equation 
22 yields for the quenching rate into the volume of the 
crystalline phase the expression 

1 V~ (rB_ Ts)~ ITI - 2 x  

X (hsu-l-(l --hgo) erf[~ (DLTx~I/2kDST} ]/ 

X [ \  DLr, ] \DSJ  1}) (B4) 
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